

Unrolled Neural Networks for Constrained Optimization

Samar Hadou and Alejandro Ribeiro

- **Goal:** Train interacting neural networks whose layers imitate dual ascent
- **Challenge:** When we train a neural network to imitate a descent algorithm, we expect trajectories like the middle, \Rightarrow but instead we observe the one on the right.
- **Our Solution:** We enforce primal descent and dual ascent during training \Rightarrow **Advantage:** Better robustness to distribution shifts.

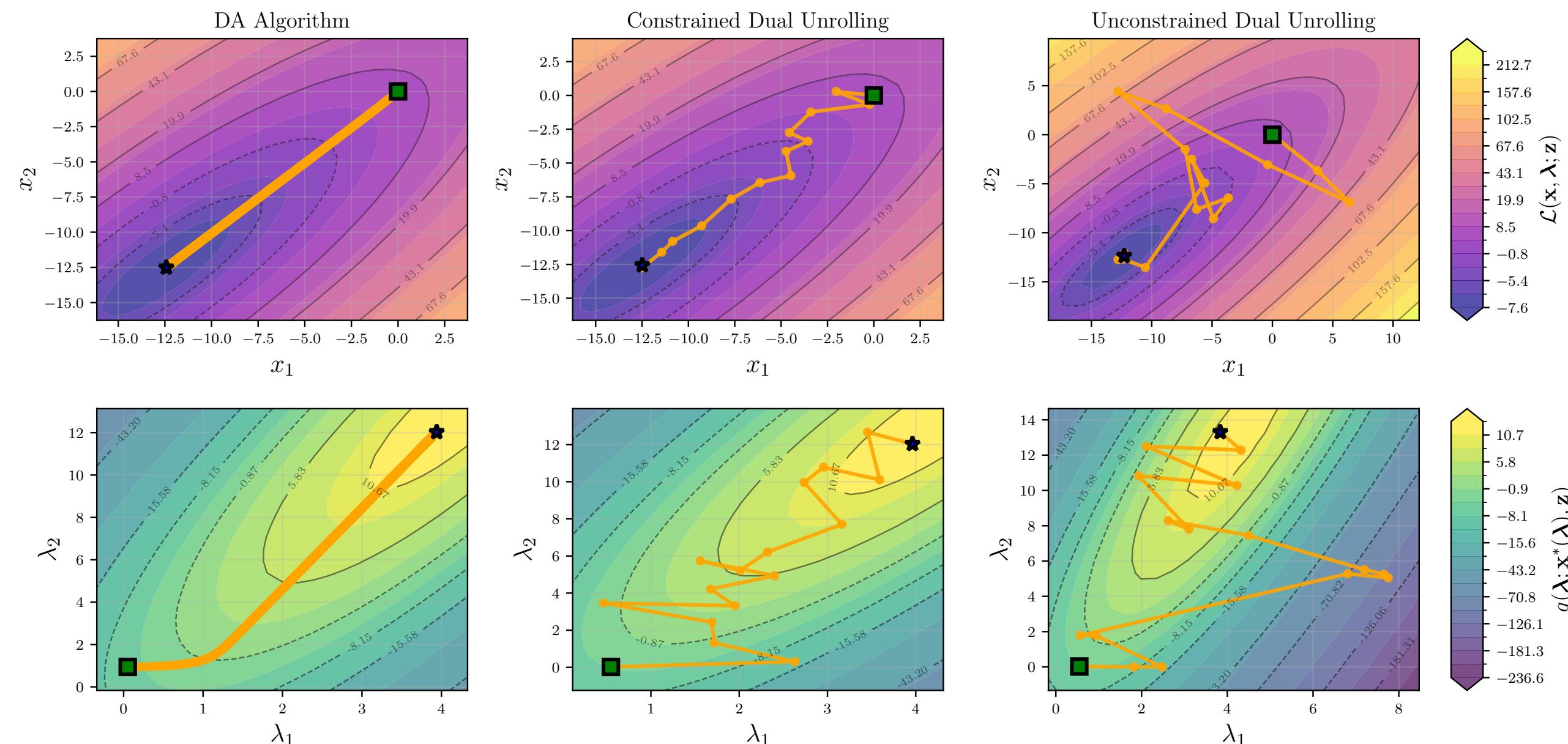
► Constrained optimization

$$P^*(\mathbf{z}) = \min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x}; \mathbf{z}) \quad \text{s.t.} \quad \mathbf{f}(\mathbf{x}; \mathbf{z}) \leq \mathbf{0},$$

$\Rightarrow \mathbf{z}$ is a problem instance.

- Define the dual problem as ($\boldsymbol{\lambda}$ is the dual variable):

$$\max_{\boldsymbol{\lambda} \in \mathbb{R}_+^m} \min_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}; \mathbf{z}) := f_0(\mathbf{x}; \mathbf{z}) + \boldsymbol{\lambda}^\top \mathbf{f}(\mathbf{x}; \mathbf{z}).$$



Constrained-Optimization Unrolling

- The DA algorithm finds the solution through iterations of two steps,

$$\mathbf{x}_l^* \in \operatorname{argmin}_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}_l; \mathbf{z}), \quad (P1)$$

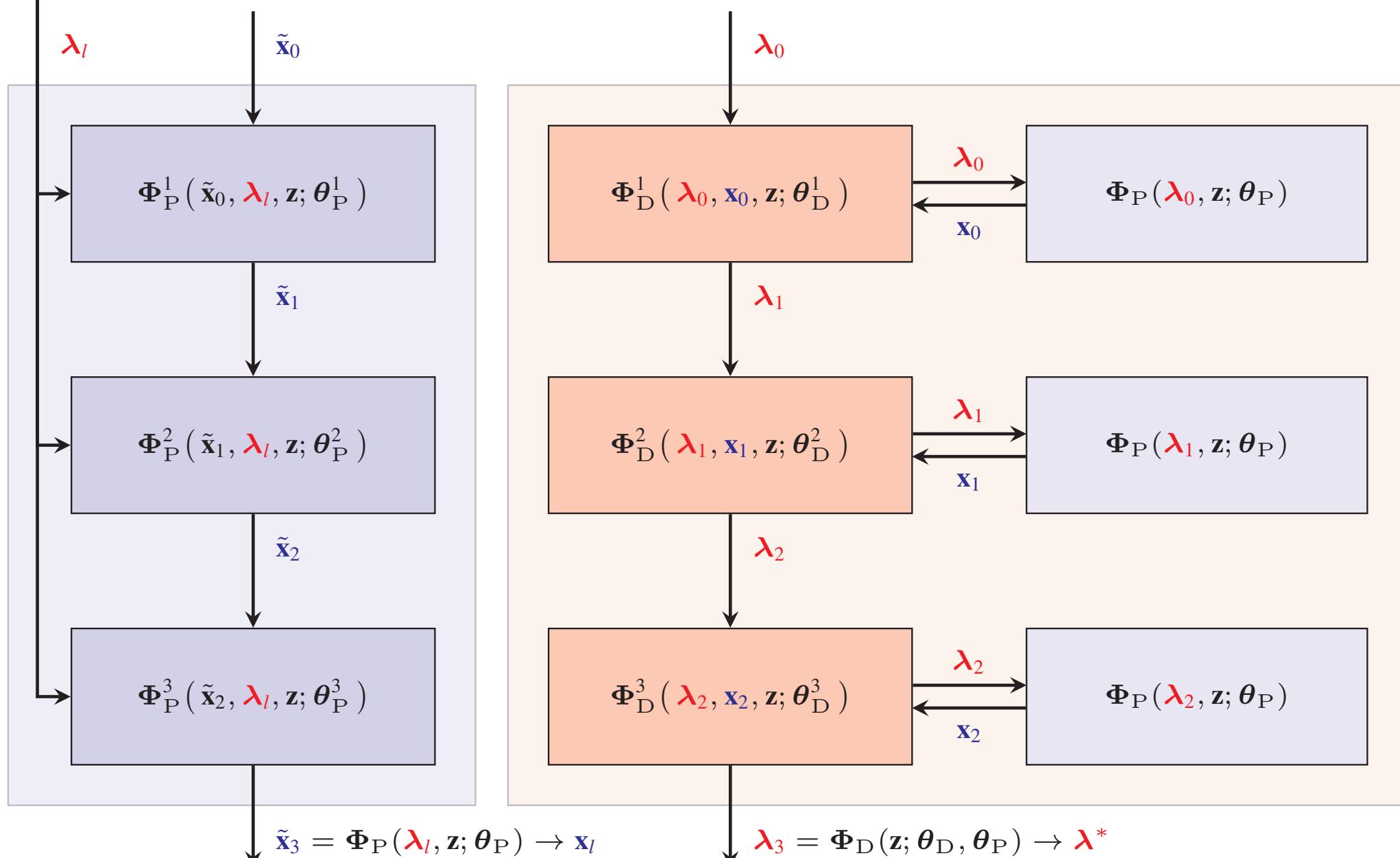
$$\boldsymbol{\lambda}_{l+1} = [\boldsymbol{\lambda}_l + \eta \mathbf{f}(\mathbf{x}_l^*, \mathbf{z})]_+. \quad (D1)$$

- Our architecture consists of a **primal** $\Phi_P(\cdot, \mathbf{z}; \boldsymbol{\theta}_P)$ and a **dual** $\Phi_D(\mathbf{z}; \boldsymbol{\theta}_P, \boldsymbol{\theta}_D)$ network
- The primal network finds the stationary point of (P1) for a given $\boldsymbol{\lambda}$:

$$\tilde{\mathbf{x}}_k = \Phi_P^k(\tilde{\mathbf{x}}_{k-1}, \boldsymbol{\lambda}_k, \mathbf{z}; \boldsymbol{\theta}_P^k). \quad (P2)$$

- Each dual layer returns a dual variable in response to the feasibility violation:

$$\boldsymbol{\lambda}_l = \Phi_D^l(\boldsymbol{\lambda}_{l-1}, \Phi_P(\boldsymbol{\lambda}_{l-1}, \mathbf{z}; \boldsymbol{\theta}_P), \mathbf{z}; \boldsymbol{\theta}_D^l). \quad (D2)$$



Numerical Results

- We consider mixed integer quadratic programs (MIQPs) with n variables, m linear constraints and r integer constraints.

\Rightarrow We relax the integer constraints into linear *box* constraints:

$$\min_{\mathbf{x}} \frac{1}{2} \mathbf{x}^\top \mathbf{P} \mathbf{x} + \mathbf{q}^\top \mathbf{x} \quad \text{s.t.} \quad \mathbf{A} \mathbf{x} \leq \mathbf{b}.$$

- We design GNN-based primal and dual networks:

$$\mathbf{X}_\ell = \varphi \left(\sum_{h=0}^{K_h} \mathbf{S}^h \mathbf{X}_{\ell-1} \boldsymbol{\Theta}_{\ell,h} \right), \quad \mathbf{S} = \begin{bmatrix} \mathbf{P} & \mathbf{A}^\top \\ \mathbf{A} & \mathbf{0} \end{bmatrix},$$

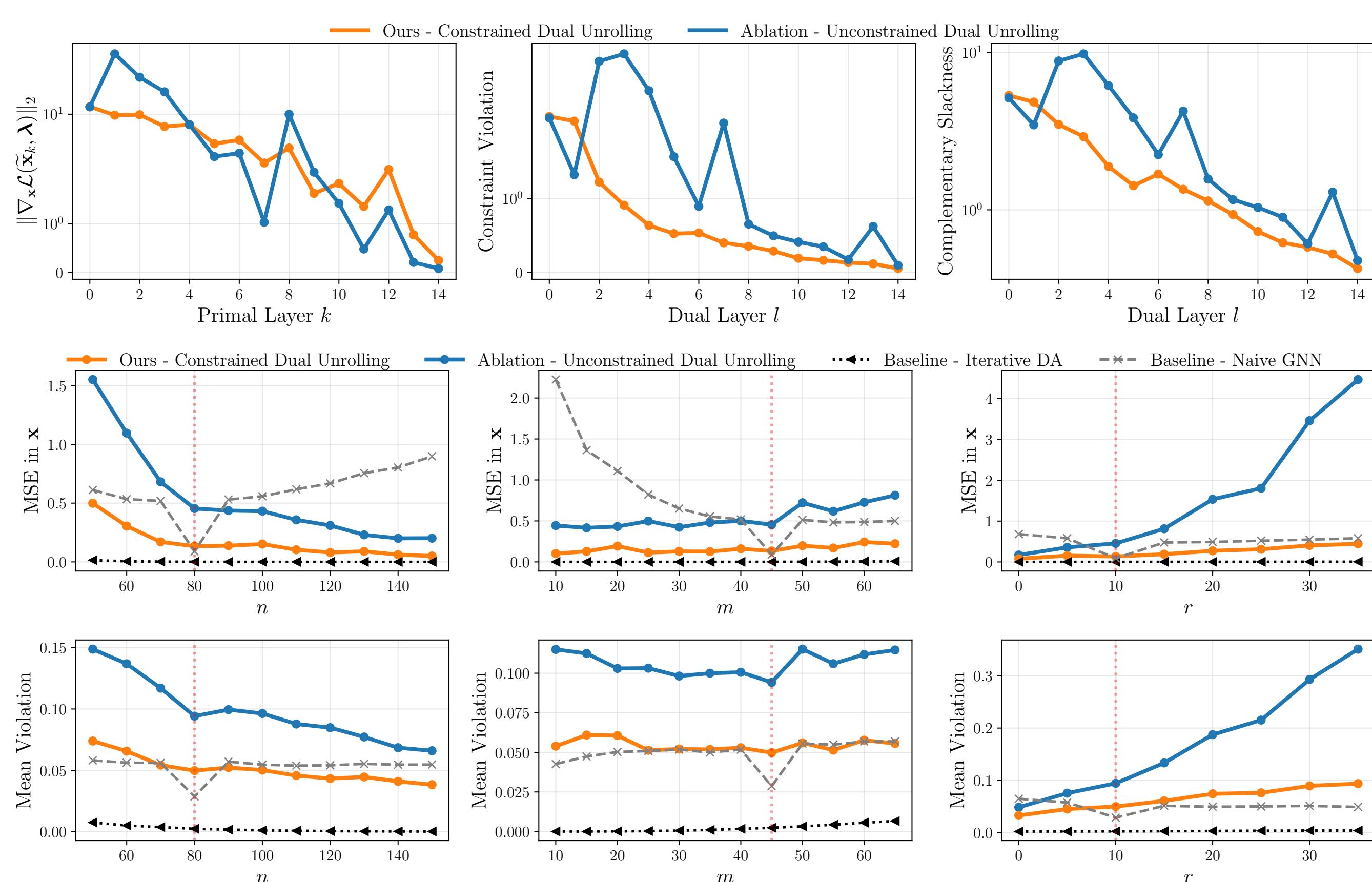
where K_h determines the neighborhood size.

- Under the constraints, we observe a consistent decrease in the Lagrangian gradient norm and in the mean constraint violations across the layers.

- **OOD Performance:** We vary one problem parameter while keeping the others fixed.

\Rightarrow We consistently outperform the unconstrained model and naive GNN in optimality and feasibility across all OOD scenarios.

\Rightarrow The gap widens as the distribution shift becomes more severe (i.e., $(m+2r)/n$ increases).



The red dotted line represents the in-distribution scenario.