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» Constrained optimization is a family of problems that
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» The DA algorithm finds the solution through iterations of two steps, » We use an unsupervised loss that mimics the dual problem:
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» Our architecture consists of a primal ®p(-,z;0p) and a dual Op(z; Op, Op) network where Az s the final output of the dual network.
» The primal network finds the stationary point of (P1) for a given A:
) . » We enforce descent and ascent constraints on the primal and dual layers.
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» Fach dual layer returns a dual variable in response to the feasibility violation: the gradient norm of the Lagrangian across the layers:
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= The dual training objective incorporates ascent constraints in the form of
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. ’ » Key issue: The primal network needs to be trained on the multipliers that would
Y Y be seen during the execution of the dual network.
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[ @3 (%0, M7 65) &3 (N, x2,2; 05 —> &p (X, z; 0p) » We alternate between training the primal and dual networks:
- = For each network, we construct the corresponding Lagrangian and perform a
few training epochs through a primal-dual algorithm (cf. (P1)—(D1))
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Numerical Results
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» We design GNN-based primal and dual networks: o . S
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where Kj, determines the neighborhood size. \
21'0_ 21.5— \K 23—
» Under the constraints, we observe a consistent decrease in the (g (;,i 101 W (;% 21
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( ( )/ ) The red dotted line represents the in-distribution scenario.
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