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▶ Goal: Train interacting neural networks whose layers imitate dual ascent

▶ Challenge: When we train a neural network to imitate a descent

algorithm, we expect trajectories like the middle,

⇒ but instead we observe the one on the right.

▶ Our Solution: We enforce primal descent and dual ascent during training

⇒ Advantage: Better robustness to distribution shifts.

▶ Constrained optimization is a family of problems that

P∗(z) = min
x∈Rn

f0(x; z) s.t. f(x; z) ≤ 0,

⇒ z is a problem instance.

▶ Define the dual problem as (λ is the dual variable):

max
λ∈Rm

+

min
x

L(x,λ; z) := f0(x; z) + λ⊤f(x; z).
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Constrained-Optimization Unrolling

▶ The DA algorithm finds the solution through iterations of two steps,

x∗l (λl) ∈ argmin
x

L
(
x,λl; z

)
, (P1)

λl+1 =
[
λl + η f

(
x∗l , z

) ]
+
. (D1)

▶ Our architecture consists of a primal ΦP(· , z;θP) and a dual ΦD(z;θP,θD) network

▶ The primal network finds the stationary point of (P1) for a given λ:

x̃k = Φk
P

(
x̃k−1,λl, z;θk

P

)
. (P2)

▶ Each dual layer returns a dual variable in response to the feasibility violation:

λl = Φl
D

(
λl−1, ΦP(λl−1, z;θP), z; θl

D

)
. (D2)
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Constrained Dual Unrolling

▶ We use an unsupervised loss that mimics the dual problem:

θ∗
D ∈ argmax

θD

Ez

[
L
(
ΦP(λL, z;θ∗

P)︸ ︷︷ ︸
xL

, λL; z
)]
, (D-train)

with θ∗
P ∈ argmin

θP

Ez,λ

[
L
(
ΦP(λ, z;θP), λ; z

)]
, (P-train)

where λL is the final output of the dual network.

▶ We enforce descent and ascent constraints on the primal and dual layers.

⇒ The primal training objective incorporates descent constraints that decrease

the gradient norm of the Lagrangian across the layers:

θ∗
P ∈ argmin

θP

Ez,λ

[
L
(
ΦP(λ, z;θP), λ; z

) ]
, (P-constrained)

s.t. Ez,λ

[
∥∇xL

(
x̃k,λ; z

)
∥ − αk∥∇xL

(
x̃k−1,λ; z

)
∥
]
≤ 0, ∀k.

⇒ The dual training objective incorporates ascent constraints in the form of

decreasing the constraint violations across the layers:

θ∗
D ∈ argmax

θD

Ez

[
L
(
ΦP(λL, z;θ∗

P)︸ ︷︷ ︸
xL

, λL; z
) ]

, (D-constrained)

s.t. Ez

[ ∥∥f(xl; z)
∥∥− βl

∥∥f(xl−1; z)
∥∥
]
≤ 0, ∀l.

⇒ The scalars αk and βl are hyperparameters governing the step size.

▶ Key issue: The primal network needs to be trained on the multipliers that would

be seen during the execution of the dual network.

▶ We alternate between training the primal and dual networks:

⇒ For each network, we construct the corresponding Lagrangian and perform a

few training epochs through a primal-dual algorithm
(
cf. (P1)–(D1)

)

Numerical Results

▶ We consider mixed integer quadratic programs (MIQPs) with n
variables, m linear constraints and r integer constraints.

⇒ We relax the integer constraints into linear box constraints:

min
x

1
2

x⊤Px + q⊤x s.t. Ax ≤ b.

▶ We design GNN-based primal and dual networks:

Xℓ = φ

( Kh∑

h=0

ShXℓ−1Θℓ,h

)
, S =

[
P A⊤

A 0

]
,

where Kh determines the neighborhood size.

▶ Under the constraints, we observe a consistent decrease in the

Lagrangian gradient norm and in the mean constraint violations

across the layers.

▶ OOD Performance: We vary one problem parameter while keeping

the others fixed.

⇒ We consistently outperform the unconstrained model and

naive GNN in optimality and feasibility across all OOD scenarios.

⇒ The gap widens as the distribution shift becomes more severe

(i.e., (m + 2r)/n increases).
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The red dotted line represents the in-distribution scenario.
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