
Unrolled Neural Networks for Constrained Optimization
Samar Hadou and Alejandro Ribeiro

▶ Goal: Train interacting neural networks whose layers imitate dual ascent

▶ Challenge: When we train a neural network to imitate a descent

algorithm, we expect trajectories like the middle,

⇒ but instead we observe the one on the right.

▶ Our Solution: We enforce primal descent and dual ascent during training

⇒ Advantage: Better robustness to distribution shifts.

▶ Constrained optimization is a family of problems that

P∗(z) = min
x∈Rn

f0(x; z) s.t. f(x; z) ≤ 0,

⇒ z is a problem instance.

▶ Define the dual problem as (λ is the dual variable):

max
λ∈Rm

+

min
x

L(x,λ; z) := f0(x; z) + λ⊤f(x; z).

−15.0 −12.5 −10.0 −7.5 −5.0 −2.5 0.0 2.5

x1

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

x
2

DA Algorithm

-5
.4

-0
.8

8.
5

19
.9

19
.9

43
.1

43
.1

67
.6

67
.6

−15.0 −12.5 −10.0 −7.5 −5.0 −2.5 0.0 2.5

x1

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

x
2

Constrained Dual Unrolling

-5
.4

-0
.8

8.
5

19
.9

19
.9

43
.1

43
.1

67
.6

67
.6

−15 −10 −5 0 5 10

x1

−15

−10

−5

0

5

x
2

Unconstrained Dual Unrolling

-5
.4

-0
.8

8.
5

19
.9

43
.1

43
.1

67
.6

67
.6

10
2.
5

10
2.

5

15
7.

6

15
7.

6

0 1 2 3 4

λ1

0

2

4

6

8

10

12

λ
2

-4
3.

20

-1
5.

58

-1
5.

58

-8
.1

5

-8
.1

5

-0
.8

7

5
.8

3

10.67

1 2 3 4

λ1

0

2

4

6

8

10

12

λ
2

-4
3.20

-15.58

-1
5.

58

-8.15

-8
.1

5

-0.87

5.
83

1
0
.6

7

0 2 4 6 8

λ1

0

2

4

6

8

10

12

14

λ
2

-1
81

.3
1-1

26
.0

6-7
0.

82

-4
3.

20

-4
3
.2

0

-1
5.

58

-1
5
.5

8

-8
.1
5

-8
.1

5

-0
.8

75
.8

3

10
.6

7

−7.6

−5.4

−0.8

8.5

19.9

43.1

67.6

102.5

157.6

212.7

L(
x
,λ

;z
)

−236.6

−181.3

−126.1

−70.8

−43.2

−15.6

−8.1

−0.9

5.8

10.7

g
(λ

;x
∗ (
λ

),
z)

Constrained-Optimization Unrolling

▶ The DA algorithm finds the solution through iterations of two steps,

x∗l (λl) ∈ argmin
x

L
(
x,λl; z

)
, (P1)

λl+1 =
[
λl + η f

(
x∗l , z

)]
+
. (D1)

▶ Our architecture consists of a primal ΦP(· , z;θP) and a dual ΦD(z;θP,θD) network

▶ The primal network finds the stationary point of (P1) for a given λ:

x̃k = Φk
P

(
x̃k−1,λl, z;θk

P

)
. (P2)

▶ Each dual layer returns a dual variable in response to the feasibility violation:

λl = Φl
D

(
λl−1, ΦP(λl−1, z;θP), z; θl

D

)
. (D2)

λl

Φ1
P

(
x̃0,λl, z; θ1

P

)

x̃0

Φ2
P

(
x̃1,λl, z; θ2

P

)

x̃1

Φ3
P

(
x̃2,λl, z; θ3

P

)

x̃2

x̃3 = ΦP(λl, z; θP) → xl

Φ1
D

(
λ0, x0, z; θ1

D

)
ΦP(λ0, z; θP)

λ0

x0

λ0

Φ2
D

(
λ1, x1, z; θ2

D

)
ΦP(λ1, z; θP)

λ1

x1

λ1

Φ3
D

(
λ2, x2, z; θ3

D

)
ΦP(λ2, z; θP)

λ2

x2

λ2

λ3 = ΦD(z; θD, θP) → λ∗

Constrained Dual Unrolling

▶ We use an unsupervised loss that mimics the dual problem:

θ∗
D ∈ argmax

θD

Ez

[
L
(
ΦP(λL, z;θ∗

P)︸ ︷︷ ︸
xL

, λL; z
)]
, (D-train)

with θ∗
P ∈ argmin

θP

Ez,λ

[
L
(
ΦP(λ, z;θP), λ; z

)]
, (P-train)

where λL is the final output of the dual network.

▶ We enforce descent and ascent constraints on the primal and dual layers.

⇒ The primal training objective incorporates descent constraints that decrease

the gradient norm of the Lagrangian across the layers:

θ∗
P ∈ argmin

θP

Ez,λ

[
L
(
ΦP(λ, z;θP), λ; z

)]
, (P-constrained)

s.t. Ez,λ

[
∥∇xL

(
x̃k,λ; z

)
∥ − αk∥∇xL

(
x̃k−1,λ; z

)
∥
]
≤ 0, ∀k.

⇒ The dual training objective incorporates ascent constraints in the form of

decreasing the constraint violations across the layers:

θ∗
D ∈ argmax

θD

Ez

[
L
(
ΦP(λL, z;θ∗

P)︸ ︷︷ ︸
xL

, λL; z
)]

, (D-constrained)

s.t. Ez

[∥∥f(xl; z)
∥∥− βl

∥∥f(xl−1; z)
∥∥
]
≤ 0, ∀l.

⇒ The scalars αk and βl are hyperparameters governing the step size.

▶ Key issue: The primal network needs to be trained on the multipliers that would

be seen during the execution of the dual network.

▶ We alternate between training the primal and dual networks:

⇒ For each network, we construct the corresponding Lagrangian and perform a

few training epochs through a primal-dual algorithm
(
cf. (P1)–(D1)

)

Numerical Results

▶ We consider mixed integer quadratic programs (MIQPs) with n
variables, m linear constraints and r integer constraints.

⇒ We relax the integer constraints into linear box constraints:

min
x

1
2

x⊤Px + q⊤x s.t. Ax ≤ b.

▶ We design GNN-based primal and dual networks:

Xℓ = φ

(Kh∑

h=0

ShXℓ−1Θℓ,h

)
, S =

[
P A⊤

A 0

]
,

where Kh determines the neighborhood size.

▶ Under the constraints, we observe a consistent decrease in the

Lagrangian gradient norm and in the mean constraint violations

across the layers.

▶ OOD Performance: We vary one problem parameter while keeping

the others fixed.

⇒ We consistently outperform the unconstrained model and

naive GNN in optimality and feasibility across all OOD scenarios.

⇒ The gap widens as the distribution shift becomes more severe

(i.e., (m + 2r)/n increases).

0 2 4 6 8 10 12 14

Primal Layer k

0

100

101

‖∇
x
L(

x̃
k
,λ

)‖
2

0 2 4 6 8 10 12 14

Dual Layer l

0

100

C
on

st
ra

in
t

V
io

la
ti

on

0 2 4 6 8 10 12 14

Dual Layer l

100

101

C
om

p
le

m
en

ta
ry

S
la

ck
n

es
s

Ours - Constrained Dual Unrolling Ablation - Unconstrained Dual Unrolling

60 80 100 120 140

n

0.0

0.5

1.0

1.5

M
S

E
in

x

10 20 30 40 50 60

m

0.0

0.5

1.0

1.5

2.0

M
S

E
in

x

0 10 20 30

r

0

1

2

3

4

M
S

E
in

x

60 80 100 120 140

n

0.00

0.05

0.10

0.15

M
ea

n
V

io
la

ti
on

10 20 30 40 50 60

m

0.000

0.025

0.050

0.075

0.100

M
ea

n
V

io
la

ti
on

0 10 20 30

r

0.0

0.1

0.2

0.3

M
ea

n
V

io
la

ti
on

Ours - Constrained Dual Unrolling Ablation - Unconstrained Dual Unrolling Baseline - Iterative DA Baseline - Naive GNN

The red dotted line represents the in-distribution scenario.

selaraby@seas.upenn.edu NeurIPS 2025

